How to make Fermi-Hubbard model in a tweezer array?
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This note elaborates how to derive (mainly single-band) Hubbard model from a general two-body in-
teracting Hamiltonian [1, 2] and how the model parameters are calculated in basis of maximally localized
Wannier functions (MLWFs) [3].

1 Model

Starting from a general many-body Hamiltonian with two-body interaction Va(r — r/):
h? 1
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What we now want to do is to do a basis transformation, from position space ¥(r) to a new basis w;,:

P(r) = Z Wiy, (7) @iy (2)

where 4 is the lattice site label and g is the band index'. w;, is the Wannier basis of which the exact form
we don’t know so far, but is assumed following properties (or more precisely, approximations):

1. w;, is local enough such that only nearest neighbor overlap is non-negligible

2. w;, in each band is constructed by linearly combining a non-overlapping set of eigenstates of single
particle Hamiltonian® w;, = Y-, ¢}, ¢a, With Hoda = €a¢a and Yu # v, a(u) # a(v)

The property 2 is safe only when groups of eigenstates used to form energy bands are far apart enough
from each other, or in other words, the formed bandwidth is much smaller than the bandgap.
Rewrite Hamiltonian in the new basis:

-y t 1 3 bt
H= tijuuaiuaju + 5 Uijk‘luﬂ'lﬂ/lai#ajula’kll/all//' (3)
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And each matrix element is
g = | drw}, 2 V2 + Vi - 4
Lijpw = rww(r) om + Vo(r) | win(r) (4)

Uijkluu/w/ = /ddrddr'wa(r)w;ﬂ,(r')vg(r - rl)ka (rl)wll/’ (T) (5)

1i and p are countably many indices, they must be combined together to match number of basis elements in continuous
basis |r). Alternatively, we can think about folded free particle bands in Brillouin zone.
2Note that here we don’t restrict on symmetries of the single particle states. We mix them, and only sort by eigenenergy.
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Now for t, use property 2 of Wannier basis, thus term is reduced to two parts:
h2
biju = /d Tw;, (r) {—V2 + VO(T)} w;p(T)
— &, / dro’ (r)gu(r)
S e, i (6)

- / drw, (r) {—zh;vz + Vb(”')} win(r) =Y €alct,?, (7)

a

where we have assumed the orthogonality of single particle eigenstates ¢, .

Furthermore, if we also use the property 1 of Wanneir basis, we can further reduce matrix ¢;; to be nonzero
only when i, j are nearest neighbors. However, this is not very important in our practical calculations.

We should check the validity of using the property 2 here. For single particle parameters ¢t and F, we need
t < AFE, where AF is the band gap. In cold atom experiments, the band gap is typically trap frequency
of one single atom trap (~ kHz), which is indeed much larger than the tunneling between different traps
(~ 100 Hz).

Let’s come to the interacting part. This part is more complicated, as it requires us to make more
assumptions on the interaction. We are considering atom-atom interaction at ultracold temperature, which
is, to the leading order, the van der Waals interaction ~ % This interaction is fast decaying, and more
importantly, is only at the range of several to tens of Bohr radii, except for Rydberg atoms, while the atom
spacing is at the order of laser wavelength. So we can safely assume it to be Vo(r — r’)  6(r — r’). With
correct dimensions we say
drhla,

m

Va(r —r') = o(r —r7), (8)

where a; is the s-wave scattering length. So in general for the s-wave scattering, the interaction is local but
related to any combination of four bands:

dnh2a, N N
Uiuuéa = m /dd,rwiu(r)wiu (T)wié(T)wiU (T) (9)

More specifically in the system we are considering, the experiments are done at extremely low temperature
such that only ground motion states in the trap are used. This clears for a single band approximation, with
only atoms in degenerate bands with different spins are allowed to occupy and interact in one trap. Thus,

Arh2a,
Uiy = ”T“ % |w;,, ()] (10)

This approximation is safe only when interaction U < AE. In experiments, with U/t ~ O(1) this is also
well satisfied.
The model now is simplified as, with single band and nearest neighbor approximation

H = Ztija;raj + Z Eﬂll + Z Uia%a;uanan, (11)
(ig) i g

which is exactly Hubbard model with site dependent parameters.

1.1 Side note: why SU(N) Fermi-Hubbard optical lattice has no spin-exchange
term

The above assumptions reveal a simple fact that the SU(N) Fermi-Hubbard model has only the density-
density interaction term. In general, SU(N)-symmetric models with the Columb (or contact interactions,
even though the continuum limit model is density-density interacting, the general Waniierized model is not
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(see above for the approximations we used to simplify the model). However, we argue that the same type of
approximation can be made to simplify the model to be with only density-density interaction terms.

We go back to Eq. 9 with the short-range approximation intact, and we now have the density-density
interaction terms and spin-exchange terms. The point here is that we can still apply the “single-band”
approximation on each spin, reducing the interaction term to be

Z Uiuuazﬂazuaiuai#a (12)
i

because the Zeeman splitting on each spin flavor is at the order of ~ GHz, much higher than the U ~ kHz
itself. The huge energy penalty on the flavor flip effectively eliminates the flavor-hopping terms.

The last step we want to argue is why the U coupling is flavor-symmetric, i.e., Uy, — U. This is not
always true, as we can see from Ref. [4]. But in general, unless particularly chosen, the hyperfine levels with
the same F' inherently have the identical U independent of flavor, because the trapping laser (frequency
~ 100THz) in general is not sensitive to the hyperfine level (in Zeeman split level ~ GHz). Again, this is a
natural outcome of order hierarchy. The effective SU(N) symmetry in this model is highly accurate, given
the composite two huge order differences.

For this same reason, it’s not easy for the SU(N) simulator to realize a spin-selective tunneling, unless
you put the atoms on different orbitals, or you may “de-detune” a certain spin level on purpose so that it
resonates with the trappin laser.

2 Maximally localized Wannier functions

The above discussion on the Wannier basis doesn’t show how to build the basis. For periodic boundary
systems, it is relatively easy, as it can be done by a discrete Fourier series expansion of Bloch wavefunction
at each lattice site. But for the isolated open boundary systems we are now interested in, we need a special
technique called maximally localized Wannier function (MLWF) to build the localized basis with the two
desirable properties in the last section.

The key idea here is to find out the MLWF basis {w;, } of band p by optimizing the spatial variance cost
function

2 2
Q=3 [{ww| r Jwip) = > (wip| ra |wip) 1 : (13)
i a
From now on we concentrate on one single band, and omit the band index p.
According to [3], it is useful to decompose the cost function into two parts: a trace of some operator 2y

and its remainder (2, as the trace is invariant under unitary transformation we don’t need to optimize it in
the later process

Q= Z [(wz| r? |lw;) — Z (wi| rq |wi>2]

a

= Z (wil 7% Jwi) = Z | (wil 7o Jwg) P =D | wil 74 wg) |7

i
=Yt [Pro(1 — Pyral + 3 5 [ {wil ra ;) 2
a i#j a
=Qy JrQ, (14)

where P = )" |w;) (w;]| is the projector onto the u-th band.
Then the problem is reduced to calculate all off-diagonal matrix elements (w;| 7, |w;) in eigenstate basis



{¢.} and optimize over unitary matrix ¢}

Q=73 > [{wilre|w;)
i#£j a

=22 1D ()l (15)

i#j a  mn

where 74 mn is a shorthand for (@] re |¢n).

This expression is non-negative, and the zero value can be taken if we can simultaneously diagonalize
re = ,y,2. If we calculate a 1D lattice, only 7, = = matrix would be non-zero (the reason will be seen
below: reflection symmetry of bands), the solution states are just eigen states of z,,,, and is real given that
eigenstates of real hermitian matrix are real (disregarding the overall phase).

What about higher dimensions? This is no longer true, as DVR basis is not complete, the matrices r,
are basis dependent and in general don’t commute. The optimization needs to be done numerically. But we
can play a trick so that the matrix ¢* is simplified to be real entries only.

This is done as the following. We find 3 real (orthogonal) matrices Of; to diagonalize 74 ,n respectively:

Ta,lékl = Z""a,mnOfn zm~ (16)

Then we decompose ¢* =Y, 0% ,z;. We absorb all complex phases into unitary matrix zf}. For any a:

1"

Z|Z 7"(1 mn| Z|Z(Zlai)*zlajra7l|2

i#j mn i#£] l
- E : E : le leral § anran
i#£j
§ : E 50
= Ta,nTa,l le nj TL’LZl_j

i#]

= § TanTa,l E E le n] nlzlj
ij
_ a\*x _a a * _a a .a * a .a
= E :Tam?"a,l E (213)" 2 E (an) 2l — E (2152ni) " 2l 2
In

7 7 1
= TanTal (m -3 |z;z-|2|zzi|2> : (17)
In 7

We can see that the cost function value is independent on phase of any matrix entry zj}. So it is safe to set
all entries of ¢* to be real.
This is done by, say, in symmetry-adapted sinc DVR basis:

(wilra [wy) = Z /ddr¢ T)Ta®n(T)
= 30 S e eh ) ol [ dir(aL) ral(r), (19)

mn kil

where p, g are sector labels of the corresponding eigenstates k,[. Once k,[ are determined, p, ¢ are automat-
ically determined so they are not independent indices. Values of k,[ are related to symmetry sectors they

are in:
0,1,...,N =1
k: b bl b p (19)
1,2,....N p=-—1.



Immediate observation tells that for any dimension b # a, the orthogonality ensures symmetry sector

P» = qp must be satisfied; while for dimension a, p, = —q, is the only way to make the integral nonvanishing.
Combining with the quadrature rule of DVR basis integral, in eg. 3D the integral is calcualted as
/ (AP (1)) ro Al (r)
Az al
= ?aépaﬁqa H Opy.an Z i(Oki +pa5k,7i)(5li + Qa(sl,ﬂ)
b#a i=—N
i#0
Azx N
= Ta%,—qa 11 6v0ar D [i6ki6ii — (=)0, —i61,—i]
b#a i=—N
i#£0
N
=Az4bp,,—q, H Opy.a Z 05 013 - (20)
b#a i=1

So the matrix element is

N
(Wil o [wy) = (M)t Aza > USH) 0L 10ps—a0 [ Opnan = D (/) ) RE,, (21)
=1

mn b#a mn

By calculating the matrix element of tensor RS, , we can derive the cost function needed by optimization.
For optimization of a unitary matrix, there are established algorithms for such kind of Riemannian
manifold optimization, eg. the ones implemented in pymanopt package [5]. By using them the target unitary

transformation is readily obtained.
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